We use cookies to ensure that we can provide you with the best experience on our website. By using our website, you are consenting to the use of cookies as set out in our policy. OK
Show Prices Inc VAT
Help
  • Sign up for our Newsletter

ROHM expands its full SiC Power Module lineup with new 1200V/300A model ideal for high power applications

Date Published : 30/06/2016 Share with:

ROHM has recently announced the development of a 1200V/300A full SiC power module designed for inverters and converters in solar power conditioners and industrial equipment.

The 300A rated current makes the BSM300D12P2E001 suitable for high power applications such as large-capacity power supplies for industrial equipment. In addition, 77% lower switching loss vs. conventional IGBT modules enables high-frequency operation, contributing to smaller cooling countermeasures and peripheral components.

In March 2012, ROHM began mass production of the world's first full SiC power module with an integrated power semiconductor element composed entirely of silicon carbide, and its 120A and 180A/1200V products continue to see increased adoption in the industrial and power sectors. And although further increases in current are expected due to energy-saving effects, in order to take advantage of the high-speed switching capability of SiC products an entirely new package design was needed that can minimize the effects of surge voltage during switching which can become particularly problematic at higher currents.

In response, the BSM300D12P2E001 features an optimized the chip layout and module construction that significantly reduces internal inductance, suppressing surge voltage while enabling support for higher current operation up to 300A. And going forward ROHM will continue to strengthen its lineups by developing products compatible with larger currents that incorporate SiC devices utilizing high voltage modules and trench structures.

Key Features

1. Reduced switching loss through higher frequency operation
Replacing IGBT modules is expected to reduce switching loss by up to 77%, enabling smaller cooling systems to be used. And higher frequency switching will make it possible to decrease the size of peripheral components such as the coil and capacitors as well, improving efficiency while contributing to greater end-product miniaturization.

2. Lower inductance improves current-handling capability
Increasing the rated current for power modules involves reducing the internal inductance to counter the higher surge voltages generated during switching. The BSM300D12P2E001 features an all-SiC construction and optimized circuit layout that cuts internal inductance by half, making it possible to increase the rated current to 300A.

Device Configuration

  • Full SiC module integrates an SiC SBD and SiC-MOSFET into a single package
  • Equivalent package size as standard IGBT modules
  • Built-in thermistor
  • Tjmax=175°C

Click here for more information or to buy from Anglia Live.

 

You may also be interested in

ROHM further expand SiC MOSFET range with addition of new SMD package option, samples available from Anglia

As one of the global leaders in Silicon Carbide process technology, ROHM are continually expanding their range of SiC MOSFETs. These devices are driving the move towards greater energy efficiency and power handling demanded by applications.


ROHM expand SiC MOSFET range with addition of 3<sup>rd</sup> Generation devices with 35% lower switching losses, samples available from Anglia

As one of the global leaders in Silicon Carbide process technology, ROHM are continually expanding their range of SiC MOSFETs. These devices are driving the move towards greater energy efficiency and power handling demanded by applications


Introducing Silicon Carbide (SiC) MOSFETs from ROHM Semiconductor, samples available from Anglia

In recent years Silicon Carbide (SiC) has emerged as one of the most viable candidates in the search for a next-generation, low-loss power semiconductor element due to its low ON resistance and superior high temperature, high frequency.


ROHM’s Arduino Expansion Board Enables Configuration of a Sensor Environment in 5 Minutes, evaluation boards available from Anglia

ROHM has released a new sensor shield (expansion board) equipped with 8 sensor boards (e.g. accelerometer, barometric pressure, geomagnetic, heart rate sensors, etc.) designed for use with existing open platform MCUboards such as Arduino, and mbed.


ANGLIA-LIVE.COM IS A B2B WEBSITE ONLY
© 2024 Anglia Components Plc. All rights reservedTerms & ConditionsTerms of UsePrivacy PolicyAnti Bribery Statement